VTU 1st Year 21MAT21 [SET-2] Solved Model Question Paper Advanced Calculus and Numerical Methods

VTU 1st Year 21MAT21 Advanced Calculus and Numerical Methods set-2 Solved Model Question Paper with answers available on this website.

VTU 1st Year Advanced Calculus and Numerical Methods set-2 Solved Model Question Paper


Module-1

1.A] Evaluate โˆซ โˆซ ๐‘ฅ๐‘ฆ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ over the region bounded by the x-axis, ordinate x=2a and the curve ๐‘ฅ2 = 4๐‘Žy

Get Answer


1.B] Find the volume bounded by the cylinder ๐‘ฅ2 + ๐‘ฆ2 = 4 and the planes ๐‘ฆ + ๐‘ง = 4 and ๐‘ง = 0, by using double integration

Get Answer


1.C] Show that \int_{0}^{\frac{\Pi}{2}}\sqrt{\sin\Theta}d\Theta X\int_{0}^{\frac{\Pi}{2}}\frac{d\Theta}{\sqrt{\sin\Theta}}=\Pi

Get Answer

or


2.A] Change the order of integration and hence evaluate \int_{0}^{\infty }\int_{x}^{\infty }\frac{e^{-y}}{y} dydx.

Get Answer


2.B] Evaluate \int_{0}^{1 }\int_{0}^{\sqrt{1-x^{2}} }\int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyz dxdydz.

Get Answer


2.C] Show that \Gamma\left( \frac{1}{2} \right)=\sqrt{\Pi} .

Get Answer


Module-2

3.A] Find the angle between the surfaces ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2 = 9 and ๐‘ง = ๐‘ฅ2 + ๐‘ฆ2 โˆ’ 3 at the point (2, โˆ’1, 2)

Get Answer


3.B] If ๐นโƒ— = ๐‘ฅ2๐‘ฆ ๐‘–+ ๐‘ฆ2๐‘ง ๐‘—+ ๐‘ง2๐‘ฅ ๐‘˜ , find ๐ถ๐‘ข๐‘Ÿ๐‘™(๐ถ๐‘ข๐‘Ÿ๐‘™๐นโƒ—)

Get Answer


3.C] Show that ๐นโƒ— = (๐‘ฆ2 โˆ’ ๐‘ง2 + 3๐‘ฆ๐‘ง โˆ’ 2๐‘ฅ)๐‘–+ (3๐‘ฅ๐‘ง + 2๐‘ฅ๐‘ฆ)๐‘—+ (3๐‘ฅ๐‘ฆ โˆ’ 2๐‘ฅ๐‘ง + 2๐‘ง)๐‘˜ is both solenoidal and irrotational.

Get Answer


or

4.A] If ๐นโƒ— = (5๐‘ฅ๐‘ฆ โˆ’ 6๐‘ฅ2)๐‘–+ (2๐‘ฆ โˆ’ โˆ’4๐‘ฅ)๐‘—, evaluate โˆซc ๐นโƒ— โˆ™ ๐‘‘๐‘Ÿโƒ— along the curve ๐ถ: ๐‘ฆ = ๐‘ฅ3 in the ๐‘ฅ๐‘ฆ โˆ’plane from the point (1, 1) ๐‘ก๐‘œ (2, 8)

Get Answer


4.B] Using Greenโ€™s theorem, evaluate โˆซc (๐‘ฅ๐‘ฆ + ๐‘ฆ2)๐‘‘๐‘ฅ + ๐‘ฅ2๐‘‘๐‘ฆ, where C is bounded by๐‘ฆ = ๐‘ฅ and ๐‘ฆ = ๐‘ฅ2

Get Answer


4.C] Using Stokeโ€™s theorem, evaluate โˆฎc ๐นโƒ— โˆ™ ๐‘‘๐‘Ÿโƒ—, where ๐นโƒ— = (๐‘ฅ2 + ๐‘ฆ2) โˆ’ 2๐‘ฅ๐‘ฆ, taken around the rectangle whose vertices are (๐‘Ž, 0), (๐‘Ž, ๐‘), (โˆ’๐‘Ž, ๐‘), (โˆ’๐‘Ž, 0).

Get Answer


Module-3

5.A] Form the partial differential equation from the relation ๐‘ง = ๐‘“(๐‘ฅ + ๐‘Ž๐‘ก) + ๐‘”(๐‘ฅ โˆ’ ๐‘Ž๐‘ก).

Get Answer


5.B] Solve \frac{\partial ^{2}z}{\partial x^{2}}+\frac{\partial z}{\partial x}-4z=0 , given that when x = 0, z = 1 and \frac{\partial z}{\partial x}=y

Get Answer


5.C] Derive a one-dimensional wave equation \frac{\partial ^{2}u}{\partial t^{2}}=c^{2}\frac{\partial ^{2}2u}{\partial x^{2}}

Get Answer


or

6.A] Form the partial differential equation from ๐‘“(๐‘ฅ + ๐‘ฆ + ๐‘ง, ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2) = 0

Get Answer


6.B] Solve \frac{\partial ^{2}z}{\partial x{\partial y}} = sin ๐‘ฅ sin ๐‘ฆ for which \frac{\partial z}{\partial x} = โˆ’2 sin ๐‘ฆ when x= 0 and z = 0 when y is odd multiple of \frac{\Pi}{2} .

Get Answer


6.C] Solve ๐‘ฅ(๐‘ฆ2 โˆ’ ๐‘ง2)๐‘ + ๐‘ฆ(๐‘ง2 โˆ’ ๐‘ฅ2)๐‘ž โˆ’ ๐‘ง(๐‘ฅ2 โˆ’ ๐‘ฆ2) = 0

Get Answer


Module-4

7.A] Find a real root of ๐‘ฅ3 โˆ’ 9๐‘ฅ + 1 = 0 ๐‘–๐‘› (2, 3) by the Regula-Falsi method in four iterations.

Get Answer


7.B] Using Newtonโ€™s forward interpolation find y at x = 5 from the data:-

x46810
y13816

Get Answer


7.C] Evaluate \int_{0}^{\frac{\Pi}{2}}\sqrt{\cos\Theta}d\Theta by taking 7 ordinates by Simpsonโ€™s 1/3 rd rule.

Get Answer


or

8.A] Using the Newton-Raphson method, find the root of 3๐‘ฅ = ๐‘๐‘œ๐‘ ๐‘ฅ + 1 correct four decimal places.

Get Answer


8.B] Using Newtonโ€™s divided difference interpolation find ๐‘“(9),Given that :-

x57111317
y150392145223665202

Get Answer


8.C] Evaluate \int_{0}^{1}\frac{dx}{1+x^{2}} , using Simpsonโ€™s (3/8)๐‘กโ„Ž rule by taking 7 ordinates.

Get Answer


Module-5

9.A] Use the Taylor series method to find ๐‘ฆ(0.2) from \frac{dy}{dx}=x^{2}y-1, ๐‘ค๐‘–๐‘กโ„Ž ๐‘ฆ(0) = 1.

Get Answer


9.B] By using modified Eulerโ€™s method, find y(0.2), taking h=0.1 from \frac{dy}{dx}=\frac{y-x}{y+x} , with ๐‘ฆ(0) = 1.

Get Answer


9.C] Applying Milneโ€™s Predictor-Corrector method, find y(0.8), from \frac{dy}{dx}=x^{3}+y , given that ๐‘ฆ(0) = 2, ๐‘ฆ(0.2) = 2.073 , ๐‘ฆ(0.4) = 2.452, ๐‘ฆ(0.6) = 3.023.

Get Answer


or

10.A] Employ Taylorโ€™s series method to evaluate ๐‘ฆ(0.2),๐‘ก๐‘Ž๐‘˜๐‘–๐‘›๐‘” โ„Ž = 0.1 from \frac{dy}{dx}= ๐‘’๐‘ฅ โˆ’ ๐‘ฆ2, ๐‘ค๐‘–๐‘กโ„Ž ๐‘ฆ(0) = 1.

Get Answer


10.B] Using the Runge-Kutta method of order 4, find y at x = 0.1, given that \frac{dy}{dx}= 3๐‘’๐‘ฅ + 2๐‘ฆ, ๐‘ฆ(0) = 1.

Get Answer


10.C] Applying Milneโ€™s Predictor โ€“ Corrector method, to find y(1.4), from \frac{dy}{dx}= x^{2}+\frac{y}{2} given that ๐‘ฆ(1) = 2, ๐‘ฆ(1.1) = 2.2156, ๐‘ฆ(1.2) = 2.4549, ๐‘ฆ(1.3) = 2.7514.

Get Answer


3 Comments

Leave a Reply

Your email address will not be published. Required fields are marked *