10.a) Define cyclic group. Given the following multiplication table, show that (G, \cdot) is cyclic:
| * | a | b | c | d | e | f |
|---|---|---|---|---|---|---|
| a | a | b | c | d | e | f |
| b | b | c | d | e | f | a |
| c | c | d | e | f | a | b |
| d | d | e | f | a | b | c |
| e | e | f | a | b | c | d |
| f | f | a | b | c | d | e |

10.a) Define cyclic group. Given the following multiplication table, show that (G, \cdot) is cyclic:
| * | a | b | c | d | e | f |
|---|---|---|---|---|---|---|
| a | a | b | c | d | e | f |
| b | b | c | d | e | f | a |
| c | c | d | e | f | a | b |
| d | d | e | f | a | b | c |
| e | e | f | a | b | c | d |
| f | f | a | b | c | d | e |
