BCS405A – Discrete Mathematical Structures Set-1 Solved Model Question Paper with Answer
Module 1
- i) At least one integer is even.
- ii) There exists a positive integer that is even.
- iii) If x is even, then x is not divisible by 3.
- iv) No even integer is divisible by 7.
- v) There exists an even integer divisible by 3.
OR
2.b) Use laws of logic to prove:
p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r.
2.c) Prove by:
i) Direct proof
ii) Indirect proof
iii) Contradiction
that “If n is an odd integer, then n + 9 is even”.
Module 2
3.a) Prove by mathematical induction:
1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}.
3.c) Find number of arrangements of letters in TALLAHASSEE such that no two A’s are adjacent.
OR
4.a) Determine the coefficient of xyz^2 in (2x - y - z)^4.
4.c) How many numbers n > 5,000,000 can be formed from digits 3,4,4,5,5,6,7?
Module 3
Find: f^{-1}(0),\ f^{-1}(1),\ f^{-1}(-1),\ f^{-1}(3),\ f^{-1}(6),\ f^{-1}([-6, 5]),\ f^{-1}([-5, 5])
OR
6.b) Prove: Among any n + 1 numbers chosen from 1 to 2n, at least one pair adds up to 2n + 1.
6.c) Draw the Hasse diagram for positive divisors of 72.
Module 4
7.a) How many permutations of 26 letters avoid patterns CAR, DOG, PUN, BYTE?
7.c) Solve the recurrence: C_n = 3C_{n-1} - 2C_{n-2},\quad C_1 = 5,\ C_2 = 3
OR
8.a) How many ways to arrange letters in CORRESPONDENTS:
- i) Exactly 2 pairs of consecutive identical letters
- ii) At least 3 such pairs
- iii) No such pairs
8.b) Find rook polynomial of the given board (include image in actual paper)
8.c) Solve: a_{n+2} - 3a_{n+1} + 2a_n = 0,\quad a_0 = 1,\ a_1 = 6
Module 5
9.a) Let H, K be subgroups of G. Prove:
H \cap K is also a subgroup. Is H \cup K a subgroup?
9.b) Define Klein-4 group. Verify: A = {1, 3, 5, 7} is a Klein-4 group.
9.c) State and prove Lagrange’s Theorem.
OR
10.a) Show that:
10.c) Let G = S_4, \alpha = (1\ 2\ 3\ 4)
Find:
- Subgroup H = \langle \alpha \rangle
- Left cosets of H in G