An electron with kinetic energy 500 keV is in vacuum. Calculate:

  • Group velocity
  • de Broglie wavelength
    (Assume the mass is equal to rest mass of electron)

Answer:-

An electron with kinetic energy of 500 keV is in vacuum. Calculate:

  1. Group Velocity
  2. de Broglie Wavelength

Assume mass = rest mass of electron.

Given:

  • Kinetic Energy (K.E) = 500 keV = 500 × 10³ × 1.6 × 10⁻¹⁹ = 8 × 10⁻¹⁴ J
  • Electron mass (m) = 9.1 × 10⁻³¹ kg
  • Planck’s constant (h) = 6.626 × 10⁻³⁴ Js

1. Group Velocity:

Using the classical formula:
vg = √(2 × K.E. / m)

Substituting:
vg = √(2 × 8 × 10⁻¹⁴ / 9.1 × 10⁻³¹) = √(1.758 × 10¹⁷) ≈ 1.33 × 10⁸ m/s

2. de Broglie Wavelength:

Using the formula:
λ = h / (m × v)

Substituting:
λ = 6.626 × 10⁻³⁴ / (9.1 × 10⁻³¹ × 1.33 × 10⁸) = 6.626 × 10⁻³⁴ / 1.21 × 10⁻²² ≈ 5.49 × 10⁻¹² m

Final Answers:

  • Group Velocity: 1.33 × 10⁸ m/s
  • de Broglie Wavelength: 5.49 × 10⁻¹² m

Leave a Reply

Your email address will not be published. Required fields are marked *