21MAT31 SET-1 Solved Model Question Paper with Answer

21MAT31 SET-1 Solved Model Question Paper with Answer of all Modules with answers of Subject Transform Calculus, Fourier Series and Numerical Techniques

21MAT31 SET-1 Solved Model Question Paper with Answer

MODULE 1

Q.01aFind the Laplace transform of te-t sin2t + \frac{cos2t-cos3t}{t} .06
b

Find the Laplace transform of the triangular wave of period 2a given by

f(t)= t, 0<t<a

2a-t, a<t<2a

07
cUsing the convolution theorem find the inverse Laplace transform of \frac{s}{(s^2+a^2)^2} 07

or

Q.02aFind the inverse Laplace transform of
i) \frac{(s^2-1)^2}{s^2}
ii) \frac{s}{s^2+6s+13}
06
b

Express the following function in terms of unit step function and hence find its Laplace transform

f(t)= 1, 0<t<1

2t, 1<t<2

3t, 2<t<3

07
cSolve by using Laplace transform techniques 𝑦′′ βˆ’ 3 𝑦′ + 2𝑦 = 𝑒3𝑑 ,𝑦(0) = 1, 𝑦′(0) = βˆ’107

MODULE 2

Q.03aObtain the Fourier series for f(x) = \frac{\Pi-x}{2} in 0\le x\le 2\Pi 06
bFind half-range Fourier cosine series for the function f(x)= (x-1)2 , in 0<x<1, and hence show that \frac{\Pi^2}{8}=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+…. 07
cFind Fourier series expansion of y up to first harmonic if it is given by07
x012345
f(x)91824282620

or

Q.04aObtain the Fourier series for 𝑓(π‘₯) = |π‘₯| , βˆ’πœ‹ ≀ π‘₯ ≀ πœ‹06
bObtain half-range sine series for
𝑓(π‘₯) = x, 0\le x\le \frac{\Pi}{2}
\Pi-x, \frac{\Pi}{2}\le x\le \Pi
07
cExpand y as a Fourier series up to first harmonic if the values of y given by07
x0πœ‹/6πœ‹/3πœ‹/22πœ‹/35πœ‹/6
y1.981.301.051.30-0.88-0.25

MODULE 3

Q.05aFind the Fourier transform of
f(x)= 1-x2, \left| x \right|\le 1
0, |x|>1
Hence evaluate \int_{0}^{\infty }\frac{sinx-xcosx}{x^3}cos(\frac{x}{2})dx
06
bFind the Z-transforms of coshπ‘›πœƒ and sinhπ‘›πœƒ07
cUsing z –transformation, solve the difference equation 𝑒𝑛+2 + 6𝑒𝑛+1 + 9𝑒𝑛 = 2𝑛 , 𝑒0 = 0 ,𝑒1 = 007
Q.06aFind the Fourier sine transform of
f(x)= x, 0<x<1
2-x, 1<x<2
0, x>2
06
bFind the inverse cosine transform of
Fc(𝛼) = 1-𝛼, 0\le \propto \le 1
0, 𝛼>1
And hence evaluate \int_{0}^{\infty }\left( \frac{sint}{t} \right)^2 dt
07
cFind the inverse Z-transform of \frac{z^2-20z}{(z-2)(z-3)(z-4)} 07

MODULE 4

Q.07aSolve 𝑒π‘₯π‘₯ + 𝑒𝑦𝑦 = 0 for the square mesh with boundary values as given below. Iterate till the mesh values are correct to two decimal places10
Q.07b Evaluate the pivotal values of the equation 𝑒𝑑𝑑 = 16𝑒π‘₯π‘₯ , taking h = 1 up to t = 1.25. The boundary condition are 𝑒(0,𝑑) = 𝑒(5,𝑑) = 0,𝑒𝑑(π‘₯,0) = 0 and 𝑒(π‘₯,0) = π‘₯2(5 βˆ’ π‘₯)10

or

Q.08aGiven the values of u(x, y) on the boundary of the square as in the following figure. Evaluate the function u(x, y) satisfying the Laplace equation 𝑒π‘₯π‘₯ + 𝑒𝑦𝑦 = 0 at the pivotal points of the figure10
Q.08bFind the solution of the parabolic equation 𝑒π‘₯π‘₯ = 2𝑒𝑑 when u(4,𝑑) = 0,π‘Žπ‘›π‘‘ 𝑒(π‘₯,0) = π‘₯(4 βˆ’ π‘₯),taking β„Ž = 1. Find the values up to t = 5.10

MODULE 5

Q.09aUsing Runge –Kutta method of order four, solve \frac{d^2y}{dx^2}=x\left( \frac{dy}{dx} \right)^{2}-y^2 for x=0.2. Given, y(0)=1, y'(0)=106
bFind the external of the functional \int_{x_{0}}^{x_{1}}(1+x^2y')y' dx 07
cShow that the geodesies on a plane are straight lines07

or

Q.10aGiven 𝑦′′ = 1 + 𝑦′,𝑦(0) = 1,𝑦′(0) = 1, compute y(0.4) for the following data using Milne’s predictor-corrector method. 𝑦(0.1) = 1.1103, 𝑦(0.2).2427, 𝑦(0.3) = 1.344 𝑦′(0.1) = 1.2103, 𝑦′(0.2) = 1.4427, 𝑦′(0.3) = 1.69906
bDerive the Euler’s equation07
cFind the curves on which the functional 0∫1 [(𝑦′)2 + 12π‘₯𝑦] 𝑑π‘₯ with 𝑦(0) = 0 π‘Žπ‘›π‘‘ 𝑦(1) = 107

Leave a Reply

Your email address will not be published. Required fields are marked *