Find the largest eigen value and the corresponding eigenvector
10. C)Find the largest eigenvalue and the corresponding eigenvector of [6 −2 2][−2 3 −1][2 −1 3] with the initial approximate eigenvector [1 0 0] Answer:-
10. C)Find the largest eigenvalue and the corresponding eigenvector of [6 −2 2][−2 3 −1][2 −1 3] with the initial approximate eigenvector [1 0 0] Answer:-
10. B)Using the Gauss Jordan method, solve : 𝑥 + 𝑦 + 𝑧 = 11; 3𝑥 − 𝑦 + 2𝑧 = 12; 2𝑥 + 𝑦 − 𝑧 = 3 Answer:-
10. A)Test for consistency and solve : 5𝑥 + 3𝑦 + 7𝑧 = 4 ; 3𝑥 + 26𝑦 + 2𝑧 = 9 ; 7𝑥 + 2𝑦 + 10𝑧 = 5…
9. C)Using the Gauss-Seidel iteration method, solve the equations83𝑥 + 11𝑦 − 4𝑧 = 95;3𝑥 + 8𝑦 + 29𝑧 = 71;7𝑥 + 52𝑦 + 13𝑧 = 104 ,Carry out four…
9. B)Solve the system of equations by using the Gauss elimination method3𝑥 + 𝑦 + 2𝑧 = 3,2𝑥 − 3𝑦 − 𝑧 = −3,𝑥 + 2𝑦 + 𝑧 = 4…
9. A)Find the rank of the matrix [0 1 −3 −1] [1 0 1 1] [3 1 0 2] [1 1 −2 0] Answer:-
8. C)Solve (1 + 𝑥)2 𝑑2𝑦/𝑑𝑥2 + (1 + 𝑥)𝑑𝑦/𝑑𝑥+𝑦 = sin[2 log(1 + 𝑥)] Answer:-
8. B) Solve 𝑑2𝑦/𝑑𝑥2 + 4𝑑𝑦/𝑑𝑥+3𝑦 = 𝑠𝑖𝑛𝑥 Answer:-
8. A)Solve ( 𝑑3𝑦/𝑑𝑥3 − 5𝑑2𝑦/𝑑𝑥2 + 7𝑑𝑦/𝑑𝑥− 3𝑦) = 𝑒2𝑥 Answer:-
7. C) Using the method of Variation of parameters, solve 𝑑2𝑦/𝑑𝑥2 − 6𝑑𝑦/𝑑𝑥+9𝑦 =𝑒3𝑥/𝑥2 Answer:-